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Today (Tonight)

• Background & Motivation: Alzheimer’s disease (+ others)
• Lack of a well-defined and consistent “disease time” axis

• Data-driven Disease Progression Modelling
• Math + Human Insight + ML + “Big” Data



This talk is based on two papers

2017

2024



Definition of “Data-driven disease progression model”:

• Constructs a quantitative timeline of disease

• Directly informed by measured data
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Taxonomy:

• “Top-down”: Phenomenological

• “Bottom-Up”: Pathophysiological, a.k.a., Mechanistic

Davenport et al., J R Soc Interface 2022



What do we know about Alzheimer’s?
• Defined by post mortem histopathology

• Braak staging

• Clinical syndrome: memory etc.

• Looooong pre-symptomatic period: decades of pathology
• Virtually impossible to identify future patients 

• Risk factors: genetics, etc. 
• Rare familial/inherited forms

• Heterogeneity in syndrome, onset, progression, and pathology!
• Imaging can probe pathology in vivo (PET, MRI)
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Treatments for Alzheimer’s?
• Amyloid cascade hypothesis (Hardy/Higgins 1992; Selkoe/Hardy 2016)

+ Plenty of supporting evidence
– Anti-amyloid therapies: sketchy efficacy in large clinical trials

• Why are clinical trials “failing”? (hundreds since 2003)
• Too late? (wrong time: prevention vs cure)
• Individual variability? (wrong people)
• Insufficient duration?
• Insensitive end-points? (biology/biomarkers vs clinical benefit)
• Wrong target? (wrong biology / comorbidities / multitarget strategies)
(Salloway, CTAD 2019; Aisen, CTAD 2019)
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M. ten Kate et al., Alz Res Ther (2018)

See also: D. Cash et al., Alz Res Ther (2014)

What have clinical trials done?



M. ten Kate et al., Alz Res Ther (2018)

What have 
clinical 
trials 
done?



C.R. Jack Jnr et al., The Lancet Neurol (2010)
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The Journey to
Data-driven disease progression modelling

2002–2008 Traditional: stage == symptoms
• Regression
• Pattern recognition (supervised ML)

pre-symptomatic AD mild AD moderate AD

Scahill et al. PNAS 2002

• T1 MRI measures of neuronal atrophy: MMSE “clock”



The Journey to
Data-driven disease progression modelling

2002–2008 Traditional: stage == symptoms
• Regression
• Pattern recognition (supervised ML)Bateman et al. NEJM 2012

• Parental age of symptom onset in dominantly-inherited AD
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2002–2008 Traditional: stage == symptoms
• Regression
• Pattern recognition (supervised ML)

Classifying structural MRI in AD

Klöppel et al. Brain 2008 Mattila et al. JAD 2011

Disease State Fingerprint for AD



The Journey to
Data-driven disease progression modelling

2002–2008 Traditional: stage == symptoms
• Regression
• Pattern recognition (supervised ML)

2002–2008 Traditional: stage == symptoms
• Regression, Pattern recognition (supervised ML)

2004 Alzheimer’s Disease Neuroimaging Initiative



The Journey to
Data-driven disease progression modelling

2002–2008 Traditional: stage == symptoms
• Regression, Pattern recognition (supervised ML)

2004 Alzheimer’s Disease Neuroimaging Initiative
2010 Hypothetical Models of Alzheimer’s progression

Jack et al. TLN 2010



The Journey to
Data-driven disease progression modelling

2002–2008 Traditional: stage == symptoms
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2004 Alzheimer’s Disease Neuroimaging Initiative
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Jack et al. TLN 2013



The Journey to
Data-driven disease progression modelling

2002–2008 Traditional: stage == symptoms
• Regression, Pattern recognition (supervised ML)

2004 Alzheimer’s Disease Neuroimaging Initiative
2010 Hypothetical Models of Alzheimer’s progression (updated 2018)

Sweeney et al. Nat Comms 
2018



The Journey to
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2002–2008 Traditional: stage == symptoms
• Regression, Pattern recognition (supervised ML)

2004 Alzheimer’s Disease Neuroimaging Initiative
2010 Hypothetical Models of Alzheimer’s progression
2011 Data-Driven Disease Progression Modelling



The Journey to
Data-driven disease progression modelling

2002–2008 Traditional: stage == symptoms
• Regression, Pattern recognition (supervised ML)

2004 Alzheimer’s Disease Neuroimaging Initiative
2010 Hypothetical Models of Alzheimer’s progression
2011 Data-Driven Disease Progression Modelling
• Pseudo-time methods:

• discrete (EBM sequencing)
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• Regression, Pattern recognition (supervised ML)

2004 Alzheimer’s Disease Neuroimaging Initiative
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The Journey to
Data-driven disease progression modelling

2002–2008 Traditional: stage == symptoms
• Regression, Pattern recognition (supervised ML)

2004 Alzheimer’s Disease Neuroimaging Initiative
2010 Hypothetical Models of Alzheimer’s progression
2011 Data-Driven Disease Progression Modelling
• Pseudo-time methods:

• discrete (EBM sequencing)
• continuous (latent-time: LTJMM, IRT, GPPM)

• Pseudo-time + Clustering

• tau PET:
• Amyloid+tau:

Subtype & Stage Inference 
(SuStaIn)

Young et al. Nat. Comms 2018

Vogel+ Nat Med 2021

Aksman bioRxiv 2020, Brain 2023



Data-driven disease progression models

So far:
Phenomenological models



What about disease mechanisms?

Can we understand/explain 
“Top-down” observations of pathology, using

“Bottom-up” models of mechanism/physiology?



Bottom-up models
2009–2012 Hypotheses of neurodegeneration due to pathogens
• Selective vulnerability / Wear-and-tear / Network / Use-it-or-lose-it
• Seeley et al. Neuron 2009, Zhou et al. Neuron 2012
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2023
tau Production vs Transport
In Alzheimer’s

Villemagne et al. The Lancet Neurol 2013
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Applications

Oxtoby et al. Frontiers AI 2022



Recap

Data-Driven Disease Progression Modelling

• Goes beyond “black box” approaches: “human insight + ML” 
• Aids disease understanding at multiple scales
• Can support clinical decision making



Interested in Data-Driven Disease Progression 
Modelling?

https://disease-progression-modelling.github.io 

https://disease-progression-modelling.github.io/


Interested in Data-Driven Disease Progression 
Modelling?

https://disease-progression-modelling.github.io 

https://disease-progression-modelling.github.io/


The Alzheimer’s Disease Progression Of 
Longitudinal Evolution Challenge

Predictive modelling challenge for Alzheimer’s disease
tadpole.grand-challenge.org

TADPOLE SHARE: tadpole-share.github.io

Marinescu et al. arχiv:1805.03909 
MELBA Vol 1, 2021:19

http://tadpole.grand-challenge.org/
https://tadpole-share.github.io/
https://arxiv.org/abs/1805.03909
https://doi.org/10.59275/j.melba.2021-2dcc


• UCL POND ucl-pond.github.io
Prof. Danny Alexander, Alexandra Young, et al.

• EuroPOND europond.eu

• E-DADS e-dads.github.io

• Collaborators, Data providers, Volunteers (patients & families)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 666992
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